PS 9.1 | Electric Current and Ohm’s Law

Student Solution Key


Solutions

  1. Conceptual Explanation:
  1. a) Calculate the resistance in the circuit.

$V = IR$ (Ohm’s Law)

$V = 230~\text{V}$
$I = 1.75~\text{A}$

$V = IR$   (rearrange to solve for $R$)
$R = \frac{V}{I}$
$R = \frac{230~\text{V}}{1.75~\text{A}}$
$R = 131.428…~\Omega$
Answer: $R = 131~\Omega$

3
($230$ has 3 sig figs)

b) Explain why doubling the voltage would double the current.

  1. a) What is the current flowing through the circuit?

$V = IR$ (Ohm’s Law)

$V = 9.00~\text{V}$
$R_1 = 470~\Omega$

$V = IR$   (rearrange to solve for $I$)
$I = \frac{V}{R}$
$I = \frac{9.00~\text{V}}{470~\Omega}$
$I = 0.01914…~\text{A}$
Answer: $I = 0.0191~\text{A}$

3
(Limited by $9.00$ V)

b) If the resistor is replaced with a $1.00~\text{k}\Omega$ resistor, how does the current change?

$V = IR$ (Ohm’s Law)

$V = 9.00~\text{V}$
$R_2 = 1.00~\text{k}\Omega = 1000~\Omega$

$V = IR$   (rearrange to solve for $I$)
$I = \frac{V}{R}$
$I = \frac{9.00~\text{V}}{1000~\Omega}$
$I = 0.00900~\text{A}$
Answer: $I = 0.00900~\text{A}$
Current decreases as resistance increases.

3
(Limited by $9.00$ V)

  1. What is the resistance of a microwave drawing $12.5~\text{A}$ at $120~\text{V}$?

    $V = IR$ (Ohm’s Law)

    $V = 120~\text{V}$
    $I = 12.5~\text{A}$

    $V = IR$   (rearrange to solve for $R$)
    $R = \frac{V}{I}$
    $R = \frac{120~\text{V}}{12.5~\text{A}}$
    $R = 9.600~\Omega$
    Answer: $R = 9.60~\Omega$

    3
    (Limited by $12.5$ A)

  2. Six
  3. a) What voltage must be applied across a $33.0~\Omega$ LED requiring $15.0~\text{mA}$?

$V = IR$ (Ohm’s Law)

$R = 33.0~\Omega$
$I = 15.0~\text{mA} = 0.0150~\text{A}$

$V = IR$
$V = (0.0150)(33.0)$
$V = 0.495~\text{V}$
Answer: $V = 0.495~\text{V}$

3
(Matches input values)

b) Why is the direction of current flow important for LEDs?

  1. A battery supplies $24.0~\text{V}$ to a circuit with two identical resistors. If the total current is $0.800~\text{A}$, what is the resistance of each resistor?
$R_\text{total} = \frac{V}{I}$

$V = 24.0~\text{V}$
$I = 0.800~\text{A}$

$R_\text{total} = \frac{24.0~\text{V}}{0.800~\text{A}} = 30.0~\Omega$
Answer: $R_\text{total} = 30.0~\Omega$

 3<br>
(Matches given values)

$R_\text{series} = \frac{R_\text{total}}{2}$

$R_\text{total} = 30.0~\Omega$

$R_\text{each} = \frac{30.0~\Omega}{2} = 15.0~\Omega$
Answer: $R_\text{each} = 15.0~\Omega$

 3

$R_\text{parallel} = 2 \times R_\text{total}$

$R_\text{total} = 30.0~\Omega$

$R_\text{each} = 2 \times 30.0~\Omega = 60.0~\Omega$
Answer: $R_\text{each} = 60.0~\Omega$

 3
  1. a) Calculate the resistance of a car starter motor ($12.6~\text{V}$, $185~\text{A}$).

$V = IR$ (Ohm’s Law)

$V = 12.6~\text{V}$
$I = 185~\text{A}$

$V = IR$   (rearrange to solve for $R$)
$R = \frac{V}{I}$
$R = \frac{12.6~\text{V}}{185~\text{A}}$
$R = 0.0681…\Omega$
Answer: $R = 0.0681~\Omega$

3
(Matches given values)

b) How much charge flows through it in $3.00~\text{s}$?

$Q = I \times t$

$I = 185~\text{A}$
$t = 3.00~\text{s}$

$Q = It$
$Q = (185)(3.00)$
$Q = 555~\text{C}$

3
(Limited by $3.00$ s)

  1. a) What is the effective resistance of a laptop charging circuit ($19.5~\text{V}$, $3.33~\text{A}$)?

$R = \frac{V}{I}$

$V = 19.5~\text{V}$
$I = 3.33~\text{A}$

$R = \frac{V}{I}$
$R = \frac{19.5~\text{V}}{3.33~\text{A}}$
$R = 5.8558…\Omega$
Answer: $R = 5.86~\Omega$

3
(Matches input values)

b) How much charge is transferred in $2.00~\text{hours}$?

$Q = I \times t$

$I = 3.33~\text{A}$
$t = 2.00~\text{hr} = 7200~\text{s}$

$Q = It$
$Q = (3.33)(7200)$
$Q = 23976~\text{C}$
Answer: $Q = 2.40\times10^{4}~\text{C}$

3
(Limited by $2.00$ hr)