Parent formula:
$P = IV$
$E = P \times t$
$I = 8.0~\text{A}$
$V = 120~\text{V}$
$t = 5.0~\text{min/day} \times 30~\text{days}$
(a)
$P = (8.0~\text{A})(120~\text{V})$
$P = 960~\text{W}$
(b)
$E = (0.96~\text{kW}) \times (5.0~\text{min/day}) \times (1~\text{hr}/60~\text{min}) \times (30~\text{days})$
$E = 2.4~\text{kWh}$
$P = 960~\text{W}$
$E = 2.4~\text{kWh}$
Parent formula:
$P_\text{max} = IV$
$\text{Number of bulbs} = P_\text{max} / P_\text{bulb}$
$I = 15~\text{A}$
$V = 120~\text{V}$
$P_\text{bulb} = 60~\text{W}$
$P_\text{max} = (15~\text{A})(120~\text{V})$
$P_\text{max} = 1800~\text{W}$
$\text{Number of bulbs} = 1800~\text{W} \div 60~\text{W}$
$\text{Number of bulbs} = 30~\text{bulbs}$
$P_\text{max} = 1800~\text{W}$
30 bulbs
Parent formula:
$I = V/R$
$P = VI$
$E = Pt$
$R = 10~\Omega$
$V = 120~\text{V}$
$t = 8.0~\text{min} \times 60~\text{s/min}$
(a)
$I = 120~\text{V} / 10~\Omega$
$I = 12~\text{A}$
(b)
$P = (120~\text{V})(12~\text{A})$
$P = 1440~\text{W}$
(c)
$E = (1440~\text{W})(8.0~\text{min})(60~\text{s/min})$
$E = 691,200~\text{J}$
$I = 12~\text{A}$
$P = 1440~\text{W}$
$E = 691,200~\text{J}$
Parent formula:
$R = V^2/P$
$I = V/R$
$P = VI$
$V_\text{normal} = 3.0~\text{V}$
$P_\text{normal} = 0.50~\text{W}$
$V_\text{battery} = 6.0~\text{V}$
(a)
$R = (3.0~\text{V})^2 / 0.50~\text{W}$
$R = 18~\Omega$
(b)
$I = 6.0~\text{V} / 18~\Omega$
$I = 0.33~\text{A}$
(c)
$P = (6.0~\text{V})(0.33~\text{A})$
$P = 2.0~\text{W}$
(d) The bulb will dissipate 4 times more power than its rating, causing excessive heating and likely failure.
$R = 18~\Omega$
$I = 0.33~\text{A}$
$P = 2.0~\text{W}$
Parent formula:
$E = P \times t \times (\text{duty cycle})$
$\text{Cost} = E \times \text{rate}$
$P = 0.350~\text{kW}$
$t = 24~\text{h}$
$\text{duty cycle} = 0.40$
$\text{rate} = $0.14/\text{kWh}$
(a)
$E = (0.350~\text{kW})(24~\text{h})(0.40)$
$E = 3.36~\text{kWh}$
(b)
$\text{Cost} = (3.36~\text{kWh/day})(30~\text{days})($0.14/\text{kWh})$
$\text{Cost} = $14.11$
$E = 3.36~\text{kWh}$
$\text{Cost} = $14.11$
Parent formula:
$P = E/t$
Electrical energy: capacity to do work
Units: joules (J), kilowatt-hours (kWh)
Electrical power: rate of energy transfer
Units: watts (W)
Power equals energy divided by time.
Electrical energy represents the total work that can be done by electricity, while electrical power represents how quickly that energy is being transferred or used.
$1~\text{kWh} = 3.60 \times 10^6~\text{J}$
$1~\text{W} = 1~\text{J/s}$
Parent formula:
$R = V^2/P$
$I = P/V$
$P_{75W} = 75~\text{W}$
$P_{40W} = 40~\text{W}$
$V = 120~\text{V}$
(a) $R = V^2/P$
$R_{40W} = (120~\text{V})^2/40~\text{W}$
$R_{40W} = 360~\Omega$
$R_{75W} = (120~\text{V})^2/75~\text{W}$
$R_{75W} = 192~\Omega$
The 40 W bulb has higher resistance.
(b) $I = P/V$
$I_{75W} = 75~\text{W}/120~\text{V}$
$I_{75W} = 0.625~\text{A}$
$I_{40W} = 40~\text{W}/120~\text{V}$
$I_{40W} = 0.333~\text{A}$
The 75 W bulb draws more current.
(c) Higher power means more energy converted to light and heat per unit time, resulting in greater brightness.
$R_{40W} = 360~\Omega$
$R_{75W} = 192~\Omega$
$I_{75W} = 0.625~\text{A}$
$I_{40W} = 0.333~\text{A}$
Parent formula:
$I = P/V$
$R = V^2/P$
$P_1 = 1000~\text{W}$
$P_2 = 1500~\text{W}$
$V = 120~\text{V}$
(a) $I_1 = 1000~\text{W}/120~\text{V}$
$I_1 = 8.33~\text{A}$
$I_2 = 1500~\text{W}/120~\text{V}$
$I_2 = 12.5~\text{A}$
Current increases by 50%.
(b) $R_1 = (120~\text{V})^2/1000~\text{W}$
$R_1 = 14.4~\Omega$
$R_2 = (120~\text{V})^2/1500~\text{W}$
$R_2 = 9.60~\Omega$
Resistance decreases.
$I_1 = 8.33~\text{A}$
$I_2 = 12.5~\text{A}$
$R_1 = 14.4~\Omega$
$R_2 = 9.60~\Omega$
Parent formula:
$P_\text{loss} = I^2R$
$I = P/V$
$P = 100,000~\text{W}$
$V_1 = 20,000~\text{V}$
$V_2 = 4,000~\text{V}$
$R = 5.0~\Omega$
(a) High voltage and low current result in less energy lost as heat because power loss is proportional to the square of current ($P_\text{loss} = I^2R$).
(b) $I_1 = 100,000~\text{W}/20,000~\text{V}$
$I_1 = 5.00~\text{A}$
$P_{1,\text{loss}} = (5.00~\text{A})^2 \times 5.0~\Omega$
$P_{1,\text{loss}} = 125~\text{W}$
$I_2 = 100,000~\text{W}/4,000~\text{V}$
$I_2 = 25.0~\text{A}$
$P_{2,\text{loss}} = (25.0~\text{A})^2 \times 5.0~\Omega$
$P_{2,\text{loss}} = 3,130~\text{W}$
Power loss is 25 times greater at the lower voltage.
$P_{1,\text{loss}} = 125~\text{W}$
$P_{2,\text{loss}} = 3,130~\text{W}$
Parent formula:
$P = I^2R$
$P = V^2/R$
$R_1 = 3.0~\Omega$
$R_2 = 6.0~\Omega$
$R_3 = 9.0~\Omega$
$V = 12~\text{V}$
(a) In series, all resistors have the same current. Since $P = I^2R$, the resistor with the highest resistance (9.0 Ω) will dissipate the most power, and the one with the lowest resistance (3.0 Ω) will dissipate the least power.
(b) In parallel, all resistors have the same voltage. Since $P = V^2/R$, the resistor with the lowest resistance (3.0 Ω) will dissipate the most power, and the one with the highest resistance (9.0 Ω) will dissipate the least power.
(c) The parallel configuration will deliver more total power because the equivalent resistance is lower, allowing more current from the battery.
Series: $P_{9\Omega} > P_{6\Omega} > P_{3\Omega}$
Parallel: $P_{3\Omega} > P_{6\Omega} > P_{9\Omega}$